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Calculating electromagnetic fields requires a great amount of computation time when designing electromagnetic machines. To 

overcome the disadvantage of existing optimization algorithms, it is necessary to formulate a suitable algorithm which works situationally. 
A novel strategy-selecting hybrid optimization algorithm (SSHOA) is proposed to establish a strategy which offers a better fit for every 
iteration. The main characteristics of the SSHOA are analyzed, and a permanent magnet machine is then designed to verify 
electromagnetic performance capabilities of the proposed algorithm.  
 

Index Terms—Learning (artificial intelligence), Finite element analysis, Genetic algorithms, Design optimization. 
 

I. INTRODUCTION 

ocial cognitive theory maintains that observational learning 
enables humans to expand their knowledge and achieve 

experience vicariously. The acquired knowledge gives the 
ability to predict the outcome and consequently gives influence 
when making decisions [1]. A number of models addressing 
observational learning have been developed in the fields of 
cognitive science and artificial intelligence (AI), considering 
factors that affect the learnings and the impact they have on 
behavioral responses [2], [3].  

Optimal designing electromagnetic machinery requires 
algorithms to solve global optimization problems with the least 
amount of iteration in finite element analysis [4], [5]. 
Considering that all optimization algorithms have trade-off 
disadvantages, such as diversity versus convergence, a strategy 
used in one instance may not always be efficient during the 
enumeration of the algorithm. Changing certain parameters or 
the search strategy to make them more suitable under certain 
circumstances can maximize the efficiency, and possibly reduce 
unnecessary calculations. 

The aim of this paper is to model an artificial strategy 
selecting system that mimics human decision making process 
by means of hybrid optimization algorithms. By observing 
changes in the population, the algorithm learns and predicts to 
help utilize suitable strategies and adjust the population size [6].    

II. OBSERVATION & LEARNING 

The flow chart of the proposed algorithm is designed and 
shown in the following figure 1. There are two major steps that 
affect decision making in strategy-selecting hybrid 
optimization algorithm (SSHOA). A detailed flow chart of these 
steps is shown in figure 2.  

The first step is the Observation and Learning step. In this 
stage, information is collected from the population, and from 
repeated observations the convergence state is learned. To 
process the collected information, two factors are used. The 
observation factor (Ob) records the information. The learning 
factor (Lrn) learns to predict convergence.  

 

Fig. 1 The flow chart of the proposed algorithm. 

A. Observation Factor 

Assumption 1: The observation factor (Ob) refers to the 
number of iterations the best solution does not change. It 
increases as the same 

bestx   is repeated across multiple 

iterations, and reaches zero when the best particle is 
drastically improved. The information obtained from the 
observation factor is the criterion for learning to predict or 
deny convergence. 

B. Learning Factor 

Assumption 2: The learning factor (Lrn) is a one-digit 
binary number with a value of 0 or 1. When the algorithm 
assumes that global search is needed, the learning factor 
remains 0, but when convergence is predicted, the factor 
becomes 1.  

III. STRATEGY SELECTION 

The second part of decision making is the Strategy 
Selection step. In this step, a new strategy for the next 
iteration is chosen based on the two factors defined in the 
previous section.  

S



A. Activation Threshold 

Assumption 3: Based on the observation factor, the 
activation threshold determines when to modify the strategy.  

TABLE I 
ACTIVATION THRESHOLD VALUES 

Threshold Value 

Th1 (Population Change) 10 
Th2 (Search Method Change) 5, 15 
Th3 (Convergence Prediction) 20 

Tolerance 1% 

As shown in Table I, there are three types of thresholds 
(Th1, Th2 and Th3) with different strategies. When the 
observation factor increases and exceeds each activation 
threshold, the strategy corresponding to the threshold value is 
modified. Th1 increases or decreases the population, Th2 
changes the search method, and Th3 assumes whether a 
possible global optimal solution is found, and changes the 
learning factor to 1. The figures in table I have not yet been 
optimized. 

 
Fig. 2 A partial flow chart of the proposed algorithm about Observation & 
Learning and Strategy Selection. P refers to population size. 

IV. HYBRID GA WITH STRATEGY SELECTION 

The strategy selection algorithm is applied to optimization 
algorithms to test its performance. Based on genetic algorithm 
(GA), particle swarm optimization (PSO) and the Newton 
method were chosen as candidate search methods from which 
the strategy selection algorithm to choose. As PSO requires 
previous values of personal bests and velocities, the values of 
the closest particle were used for the new particles generated 
by the GA. Further applications to other good performing 
algorithms and the resulting performances will be described 
in the full paper. 

V. NUMERICAL TESTS AND RESULTS 

Conventional test functions are applied to evaluate the 
performance of the proposed algorithm. To assess the 

improvement of the algorithm, it is compared with standard GA 
and PSO as applied to the strategy selection algorithm.  

For a meaningful statistical analysis, each algorithm was run 
100 times at a fixed tolerance of 410   . Population sizes for 

the GA and PSO were fixed at 30, and the proposed hybrid 
algorithm had a limited population size of 10 50popsize  . As 

shown in Table II, the average numbers of function calls have 
dramatically decreased compared to conventional GA and PSO. 

 

TABLE II 
OPTIMIZATION RESULTS FOR TEST FUNCTIONS 

 GA  PSO  Hybrid 

Rastrigin’s Function* 
Avg. num. function calls  4074.6 11027.7 1314.4 

Avg. function values  1.0757 1.0015 1.0346 
Standard deviation  0.3821 0.0068 0.1494 

Rosenbrock Function** 
Avg. num. function calls  23034.6 10991.7 1592.4 

Avg. function values  1.0153 1.0177 1.0092 
Standard deviation  0.0564 0.1526 0.0535 

* 2 2
1 2 1 2 1 2 min( , ) 21 10(cos2 cos 2 ), 1f x x x x x x f         

** 2 2 2
1 2 2 1 1 min( , ) 100( ) ( 1) 1, 1f x x x x x f        

To verify the feasibility of the proposed algorithm with 
regard to the design of electric machinery, it is applied to 
minimize cogging torque of a permanent magnet (PM) machine. 
Details will be presented in the full paper.   

VI. CONCLUSION 

In this paper, we propose a new strategy-selecting hybrid 
optimization algorithm. The concept of changing strategies 
while the optimization is running is novel and can be a solution 
to circumvent the No Free Lunch Theorem [7]. Also, the 
algorithm is similar to artificial intelligence (AI) that 
predictions are made through simple information gatherings. 
Moreover, it is possible to apply more various and concrete 
methods for convergence prediction. The performance of this 
algorithm is proven through comparisons with conventional 
methods, and it is applied to optimize the design of a permanent 
magnet machine.  
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